2 41 polytope


421

142

241

Rectified 421

Rectified 142

Rectified 241

Birectified 421

Trirectified 421
Orthogonal projections in E6 Coxeter plane

In 8-dimensional geometry, the 241 is a uniform 8-polytope, constructed within the symmetry of the E8 group.

Coxeter named it 241 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequences.

The rectified 241 is constructed by points at the mid-edges of the 241. The birectified 241 is constructed by points at the triangle face centers of the 241, and is the same as the rectified 142.

These polytopes are part of a family of 255 (28 − 1) convex uniform polytopes in 8-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .

Contents


2_41 polytope

241 polytope
Type Uniform 8-polytope
Family 2k1 polytope
Schläfli symbol {3,3,34,1}
Coxeter symbol 241
Coxeter-Dynkin diagram
7-faces 17520:
240 231
17280 {36}
6-faces 144960:
6720 221
138240 {35}
5-faces 544320:
60480 211
483840 {34}
4-faces 1209600:
241920 {201
967680 {33}
Cells 1209600 {32}
Faces 483840 {3}
Edges 69120
Vertices 2160
Vertex figure 141
Petrie polygon 30-gon
Coxeter group E8, [34,2,1]
Properties convex

The 241 is composed of 17,520 facets (240 231 polytopes, 17,280 7-simplices), 144,960 6-faces (6,720 221 polytopes, 138,240 6-simplices), 544,320 5-faces (60,480 211, 483,840 5-simplices, 1,209,600 4-faces (4-simplices), 1,209,600 cells (tetrahedra), 483,840 faces (triangles), 69,120 edges, and 2160 vertices. Its vertex figure is a 7-demicube.

Alternate names

Coordinates

The 2160 vertices can be defined as follows:

16 permutations of (±4,0,0,0,0,0,0,0)
1120 permutations of (±2,±2,±2,±2,0,0,0,0)
1024 permutations of (±3,±1,±1,±1,±1,±1,±1,±1) with an even number of minus-signs

Construction

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram: .

Removing the node on the short branch leaves the 7-simplex: . There are 17280 of these facets

Removing the node on the end of the 4-length branch leaves the 231, . There are 240 of these facets. They are centered at the positions of the 240 vertices in the 421 polytope.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 7-demicube, 141, .

Images

Petrie polygon projections can be 12, 18, or 30-sided based on the E6, E7, and E8 symmetries. The 2160 vertices are all displayed, but lower symmetry forms have projected positions overlapping, shown as different colored vertices. For comparison, a B6 coxeter group is also shown.

E8
[30]
[20] [24]

(1)
E7
[18]
E6
[12]
[6]

(1,8,24,32)
D3 / B2 / A3
[4]
D4 / B3 / A2
[6]
D5 / B4
[8]
D6 / B5 / A4
[10]
D7 / B6
[12]
D8 / B7 / A6
[14]

(1,3,9,12,18,21,36)
B8
[16/2]
A5
[6]
A7
[8]

Rectified 2_41 polytope

Rectified 241 polytope
Type Uniform 8-polytope
Schläfli symbol t1{3,3,34,1}
Coxeter symbol t1(241)
Coxeter-Dynkin diagram
7-faces 19680 total:

240 t1(221)
17280 t1{36}
2160 141

6-faces 313440
5-faces 1693440
4-faces 4717440
Cells 7257600
Faces 5322240
Edges 19680
Vertices 69120
Vertex figure rectified 6-simplex prism
Petrie polygon 30-gon
Coxeter group E8, [34,2,1]
Properties convex

The rectified 241 is a rectification of the 241 polytope, with vertices positioned at the mid-edges of the 241.

Alternate names

Construction

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space, defined by root vectors of the E8 Coxeter group.

The facet information can be extracted from its Coxeter-Dynkin diagram: .

Removing the node on the short branch leaves the rectified 7-simplex: .

Removing the node on the end of the 4-length branch leaves the rectified 231, .

Removing the node on the end of the 2-length branch leaves the 7-demicube, 141.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the rectified 6-simplex prism, .

Images

Petrie polygon projections can be 12, 18, or 30-sided based on the E6, E7, and E8 symmetries. The 2160 vertices are all displayed, but lower symmetry forms have projected positions overlapping, shown as different colored vertices. For comparison, a B6 coxeter group is also shown.

E8
[30]
[20] [24]

(1)
E7
[18]
E6
[12]
[6]

(1,8,24,32)
D3 / B2 / A3
[4]
D4 / B3 / A2
[6]
D5 / B4
[8]
D6 / B5 / A4
[10]
D7 / B6
[12]
D8 / B7 / A6
[14]

(1,3,9,12,18,21,36)
B8
[16/2]
A5
[6]
A7
[8]

See also

Notes

  1. ^ Elte, 1912
  2. ^ Klitzing, (x3o3o3o *c3o3o3o3o - bay)
  3. ^ Klitzing, (o3x3o3o *c3o3o3o3o - robay)

References